Contents

Foreword xvi
Preface xvii
About the Author xx

1 What is High-End Audio? 1

2 Choosing a High-End Audio System 7
 Introduction 7
 Choosing the System Best Suited to Your Needs 8
 Setting Your Budget 9
 The Complete vs. the Incremental Purchase 10
 Value vs. Luxury Components 12
 Allocating Your Budget to Specific Components 12
 Upgrading a Single Component 16
 How to Read Magazine Reviews 17
 System Matching 20
 Do’s and Don’ts of Selecting Components 21
 Your Relationship with the Retailer 22
 Used Equipment 24
 Product Upgrades 25
 Component Selection Summary 25

3 Becoming a Better Listener 27
 Audiophile Values 29
 Pitfalls of Becoming a Critical Listener 32
 Sonic Descriptions and their Meanings 32
 Tonal Balance 35
 Overall Perspective 36
 The Treble 37
 The Midrange 38
 The Bass 40
 Soundstaging 42
 Dynamics 45
4 Preamplifiers 57
Introduction 57
How to Choose a Preamplifier 59
 Balanced and Unbalanced Connections 60
 Other Considerations in Choosing a Preamplifier 60
What to Listen For 61
Tubes vs. Transistors 64
 Tube Life and Replacement Options 65
The Line-Stage Preamplifier 66
The Phono-Stage Preamplifier 67
 RIAA Equalization 69
 Phono-Stage Gain 70
 Cartridge Loading 71
The Digital Preamplifier 72
Audio/Video Controllers and Multichannel Preamplifiers 73
Passive Level Controls: Are They Right for Your System? 73
How a Preamplifier Works 74
 Balanced and Unbalanced Preamplifiers 77
5 Power and Integrated Amplifiers 79
Introduction 79
How to Choose a Power Amplifier 81
Integrated Amplifiers 81
 How Much Power Do You Need? 83
 The dBW Power Rating 84
 Why Amplifier Output Current Matters 85
 What to Look For when Comparing Power Ratings 86
 Why Amplifier Power Isn't Everything 88
Other Power-Amplifier Considerations 90
 Tubes vs. Transistors 90
 Balanced Inputs 91
 Bridging 92
 Bi-Amping 92
What to Listen For 94
A Survey of Amplifier Types 96
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Ended Triode Amplifiers</td>
<td>96</td>
</tr>
<tr>
<td>Single-Ended Solid-State Amplifiers</td>
<td>98</td>
</tr>
<tr>
<td>Switching (Class D) Power Amplifiers</td>
<td>99</td>
</tr>
<tr>
<td>Digital Amplifiers</td>
<td>101</td>
</tr>
<tr>
<td>Output-Stage Topology and Class of Operation</td>
<td>102</td>
</tr>
<tr>
<td>How a Power Amplifier Works</td>
<td>105</td>
</tr>
<tr>
<td>The Power Supply</td>
<td>105</td>
</tr>
<tr>
<td>Input and Driver Stages</td>
<td>106</td>
</tr>
<tr>
<td>Output Stage</td>
<td>107</td>
</tr>
<tr>
<td>How a Tubed Power Amplifier Works</td>
<td>108</td>
</tr>
<tr>
<td>6 Loudspeakers</td>
<td>111</td>
</tr>
<tr>
<td>Introduction</td>
<td>111</td>
</tr>
<tr>
<td>How to Choose a Loudspeaker</td>
<td>112</td>
</tr>
<tr>
<td>Other Guidelines in Choosing Loudspeakers</td>
<td>114</td>
</tr>
<tr>
<td>Finding the Right Loudspeaker—Before You Buy</td>
<td>115</td>
</tr>
<tr>
<td>What to Listen For</td>
<td>116</td>
</tr>
<tr>
<td>Loudspeaker Types and How They Work</td>
<td>118</td>
</tr>
<tr>
<td>The Dynamic Driver</td>
<td>118</td>
</tr>
<tr>
<td>Dynamic Compression</td>
<td>120</td>
</tr>
<tr>
<td>Problems with Dynamic Drivers</td>
<td>121</td>
</tr>
<tr>
<td>The Electromagnetic Dynamic Driver</td>
<td>122</td>
</tr>
<tr>
<td>The Planar Magnetic Transducer</td>
<td>122</td>
</tr>
<tr>
<td>The Heil Air-Motion Transformer</td>
<td>127</td>
</tr>
<tr>
<td>The Electrostatic Driver</td>
<td>127</td>
</tr>
<tr>
<td>The Dipolar Radiation Patterns of Ribbons and Electrostatics</td>
<td>131</td>
</tr>
<tr>
<td>Bipolar and Omnipolar Loudspeakers</td>
<td>131</td>
</tr>
<tr>
<td>Horn Loudspeakers</td>
<td>133</td>
</tr>
<tr>
<td>Waveguides</td>
<td>135</td>
</tr>
<tr>
<td>Loudspeaker Enclosures</td>
<td>136</td>
</tr>
<tr>
<td>Infinite Baffle Loading</td>
<td>137</td>
</tr>
<tr>
<td>Reflex Loading</td>
<td>137</td>
</tr>
<tr>
<td>Passive Radiators</td>
<td>139</td>
</tr>
<tr>
<td>Transmission-Line Loading</td>
<td>139</td>
</tr>
<tr>
<td>Isobarik Loading</td>
<td>140</td>
</tr>
<tr>
<td>Energy Multiplied Bandpass</td>
<td>141</td>
</tr>
<tr>
<td>The Finite Baffle</td>
<td>142</td>
</tr>
<tr>
<td>System Q</td>
<td>142</td>
</tr>
<tr>
<td>Powered and Servo-Driven Woofers</td>
<td>143</td>
</tr>
<tr>
<td>Enclosure Resonances</td>
<td>145</td>
</tr>
<tr>
<td>Enclosure Shapes</td>
<td>147</td>
</tr>
<tr>
<td>Crossovers</td>
<td>148</td>
</tr>
<tr>
<td>The Crossoverless Coaxial Driver</td>
<td>151</td>
</tr>
<tr>
<td>Digital Loudspeakers</td>
<td>151</td>
</tr>
</tbody>
</table>
Subwoofers 153
 Subwoofer Technical Overview 155
Loudspeaker Stands 157

7 Disc Players, Transports, and DACs 159
 Introduction 159
 How to Choose a Digital Source—Overview 161
 Should You Buy a CD Player, Universal Disc Player, or Transport and DAC? 162
 How to Choose a Digital Source—Features and Specs 164
 Disc Player and DAC Features and Specs 164
 Advanced Disc-Player Features: Two Examples 170
 Transport Features and Specs 172
 What to Listen For 174
 A Closer Look at Digital Interfaces 177
 The S/PDIF Digital Interface 177
 The I2S Interface 180
 Jitter in the Digital Interface 180
 Outboard Clocks 180
 Asynchronous Sample-Rate Conversion 183
 High-Resolution Digital Interfaces 184
 High-Resolution Digital Audio: Why 44.1kHz Sampling and 16-bit Quantization Aren’t Enough 184
 16 Bits, 20 Bits, and 24 Bits 186
 A Caveat About High-Resolution Digital Audio 187
 How to Get High-Resolution Digital Audio 188
 Super Audio CD (SACD) 189
 Hybrid SACD 189
 Direct Stream Digital (DSD) Encoding on SACD 191
 DSD Sound Quality 193
 DVD-Audio 194
 Bass Management in SACD and DVD-A Players 195
 Blu-ray Disc 196
 FireWire (IEEE1394) and Digital Transmission Content Protection (DTCP) 196
 High Definition Compatible Digital (HDCD) 197
 How a DAC Works 200
 Custom Digital Filters 201
 Digital-to-Analog Conversion 201
 Delta-Sigma DACs 202
 Analog Stages 204
 How a CD Transport Works 204

8 Music Servers and Computer-Based Audio 209
 Music Server Sound Quality: Better Than Disc 210
 High-Resolution Sound Quality from Music Servers 210
 High-Resolution Downloads—A Caveat 212
Turnkey Music Servers Vs. PC-Based Servers 213
 The Turnkey Music Server 213
 Another Type of Turnkey Music Server 216
 Turnkey Server Considerations 217
 Using an iPod as a Music Server 218
Internet Radio and Music Servers 218
File Formats 219
The Do-it-Yourself PC-Based Music Server 220
 The Importance of Bit-Transparency 221
 Computer Requirements 221
 Operating System and Playback Software 222
 Hard-Disc–Drive Storage 222
 Loading Your Server with Music 225
Getting Music from the Server to Your Playback System 227
The USB Interface 228
Music-Management Software and User Interface 229
Transferring an LP Collection to a Server 229

9 Turntables, Tonearms, and Cartridges: The LP Playback System 233
 Introduction 233
 LP Playback Hardware Overview 234
 System Hierarchy: Why the LP Front End Is So Important 235
 How to Choose an LP Playback System 235
 What to Listen For 238
 Technical Aspects of Choosing an LP Front End 241
 The Turntable 243
 The Base and Plinth 244
 Sprung and Unsprung Turntables 245
 The Platter and Bearing Assembly 246
 Platter Mats, Record Clamps, and Vacuum Hold-Down Systems 248
 The Drive System 249
 The Tonearm 250
 The Phono Cartridge 254
 Moving-Magnet and Moving-Coil Cartridges 254
 The Strain-Gauge Cartridge 255
 Stylus Shapes and Cantilever Materials 256
 LP Playback System Setup 257
 Record Care and Cleaning 262
 Vinyl as Art: Half-Speed Mastering, 45rpm Pressings, 180-Gram Vinyl, and Direct-to-Disc LPs 64

10 FM Tuners, Satellite Radio, Internet Radio, and HD Radio 269
 Introduction 269
 How to Choose a Tuner 270
 What to Listen For 273
Tuner Specifications and Measurements 274
Satellite Radio 275
Internet Radio 276
HD Radio 276

11 Cables and Interconnects 277
Introduction 277
How to Choose Cables and Interconnects 279
How Much Should You Spend on Cables and Interconnects? 281
What to Listen For 282
Binding Posts and Cable Terminations 284
Bi-Wired Loudspeaker Cables 284
Balanced and Unbalanced Lines 286
Cable and Interconnect Construction 289
Conductors 289
The Dielectric 290
Terminations 290
Geometry 291
Terminated Cables and Interconnects 292
Battery Bias in Cables and Interconnects 293
Cable and Interconnect Specifications 295
Cables in the Power Amplifier/Loudspeaker Interface 295

12 Audio for Home Theater 297
Introduction 297
Overview of Home-Theater Systems 298
Should You Choose a 5.1-Channel or 7.1-Channel System? 300
Home-Theater Controllers 301
How to Choose a Controller 303
Inputs, Outputs, and Source Switching 303
Automatic Calibration 304
DSP Speaker and Room Correction 305
Analog Bypass Modes 305
Bass-Management Flexibility 306
8-Channel Analog Input 306
Digital-to-Analog Conversion 307
7.1-Channel Playback from 5.1-Channel Sources 307
THX Certification 307
Advanced Features: 3D Capability, Network Connection, Multi-Zone 308
Multichannel Power Amplifiers 308
How to Choose a Home-Theater Power Amplifier 309
Loudspeakers for Home Theater 310
The Center-Channel Speaker 310
Adding a Center Speaker to Your System 311
Left and Right Speakers 312
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surround Speakers</td>
<td>312</td>
</tr>
<tr>
<td>Dipolar and Bipolar Surround Speakers</td>
<td>312</td>
</tr>
<tr>
<td>Surround-Back Speakers</td>
<td>313</td>
</tr>
<tr>
<td>Subwoofers</td>
<td>314</td>
</tr>
<tr>
<td>Setting up a Home Theater</td>
<td>314</td>
</tr>
<tr>
<td>Basic Setup</td>
<td>314</td>
</tr>
<tr>
<td>Acoustical Treatment</td>
<td>315</td>
</tr>
<tr>
<td>Speaker Placement</td>
<td>315</td>
</tr>
<tr>
<td>Surround Speaker Placement</td>
<td>315</td>
</tr>
<tr>
<td>Center Speaker Placement</td>
<td>317</td>
</tr>
<tr>
<td>Left and Right Speaker Placement</td>
<td>317</td>
</tr>
<tr>
<td>Calibrating a Home Theater</td>
<td>318</td>
</tr>
<tr>
<td>Bass Management</td>
<td>319</td>
</tr>
<tr>
<td>Setting Individual Channel Levels</td>
<td>319</td>
</tr>
<tr>
<td>Adding Home Theater without Compromising Music Performance</td>
<td>320</td>
</tr>
<tr>
<td>Addendum: Surround-Sound Formats Explained</td>
<td>322</td>
</tr>
</tbody>
</table>

13 Multichannel Audio

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>325</td>
</tr>
<tr>
<td>A Short History of Multichannel Audio</td>
<td>326</td>
</tr>
<tr>
<td>Do We Want Multichannel Music Playback?</td>
<td>328</td>
</tr>
<tr>
<td>How to Get Multichannel Audio in Your Home</td>
<td>332</td>
</tr>
<tr>
<td>Loudspeaker Types and Placement</td>
<td>334</td>
</tr>
<tr>
<td>Bass Management</td>
<td>334</td>
</tr>
<tr>
<td>Calibration</td>
<td>336</td>
</tr>
<tr>
<td>Multichannel Playback from 2-Channel Sources</td>
<td>337</td>
</tr>
<tr>
<td>Ambisonics</td>
<td>338</td>
</tr>
</tbody>
</table>

14 System Set-Up Secrets Part One: Loudspeaker Placement and Room Acoustics

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>341</td>
</tr>
<tr>
<td>Loudspeaker Placement</td>
<td>342</td>
</tr>
<tr>
<td>Loudspeaker Placement in Asymmetrical Rooms</td>
<td>349</td>
</tr>
<tr>
<td>Short-Wall vs. Long-Wall Placement</td>
<td>350</td>
</tr>
<tr>
<td>Dipolar and Bipolar Loudspeaker Placement</td>
<td>352</td>
</tr>
<tr>
<td>Subwoofer Setup and Placement</td>
<td>353</td>
</tr>
<tr>
<td>Multichannel Loudspeaker Placement</td>
<td>356</td>
</tr>
<tr>
<td>Loudspeaker Placement Summary</td>
<td>357</td>
</tr>
<tr>
<td>Common Room Problems and How to Treat Them</td>
<td>358</td>
</tr>
<tr>
<td>Acoustical Do’s and Don’ts</td>
<td>367</td>
</tr>
<tr>
<td>A Short Course in Acoustical Theory</td>
<td>368</td>
</tr>
<tr>
<td>Listening-Room Resonance Modes</td>
<td>369</td>
</tr>
<tr>
<td>Optimizing Dimensional Ratios</td>
<td>371</td>
</tr>
<tr>
<td>Standing Waves</td>
<td>375</td>
</tr>
<tr>
<td>Reverberation</td>
<td>376</td>
</tr>
</tbody>
</table>
Building a Listening Room from Scratch 379
 Isolating the Listening Room 380
 The Walldamp Technique 381
DSP Room Correction 382

15 System Set-Up Secrets Part Two: Expert Tuning Techniques and Audiophile Accessories 385
 Accessories 386
 How to Choose Accessories 386
 Analog Accessories 393
 Headphones and Headphone Amplifiers 396
 System Set-Up Techniques 397
 Equipment Placement 397
 Cables and Interconnects 398
 Tubed Equipment 400
 LP Playback 401
 Digital Playback 401
 Loudspeakers 402
 AC Power 403
 General 403
 Equipment Racks and Isolation Devices 404
 Equipment Racks 404
 Accessories to Control Vibration 406
 AC power conditioners and AC Cords 407
 AC Cords 411
 A Final Note 411

16 Specifications and Measurements 413
 Preamplifier Specifications and Measurements 413
 Power Amplifier Specifications and Measurements 417
 Loudspeaker Specifications and Measurements 421
 Digital Specifications and Measurements 428

Appendix A: Sound and Hearing 435
 Introduction: What is Sound? 435
 Period and Frequency 436
 Wavelength 437
 Phase 437
 Absolute Polarity 439
 Complex Waves 440
 Comb Filtering 441
 Absorption, Reflection, and Diffusion 441
 Diffraction 442
 The Decibel (dB) 443
 Frequency, Loudness, and Equal Loudness Contours 446
What Is High-End Audio?

High-end audio is about passion—passion for music, and for how well it is reproduced. High-end audio is the quest to re-create in the listener’s home the musical message of the composer or performer with the maximum realism, emotion, and intensity. Because music is important, re-creating it with the highest possible fidelity is important.

High-end audio products constitute a unique subset of music-reproduction components that bear little similarity to the “stereo systems” sold in department stores. A music-reproduction system isn’t a home appliance like a washing machine or toaster; it is a vehicle for expressing the vast emotional and intellectual potential of the music encoded on our records and CDs. The higher the quality of reproduction, the deeper our connection with the music.

The high-end ethos—that music and the quality of its reproduction matter deeply—is manifested in high-end audio products. They are designed by dedicated enthusiasts who combine technical skill and musical sensitivity in their crafting of components that take us one step closer to the original musical event. High-end products are designed by ear, built by hand, and exist for one reason: to enhance the experience of music listening.

A common misperception among the hi-fi–consuming public is that high-end audio means high-priced audio. In the mass-market mind, high-end audio is nothing more than elaborate stereo equipment with fancy features and price tags aimed at millionaires. Sure, the performance may be a little better than the hi-fi you find at your local appliance store, but who can afford it? Moreover, high-end audio is seen as being only for trained, discriminating listeners, snobs, or gadget freaks—but not for the average person on the street.

High-end audio is none of these things.

First, the term “high-end” refers to the products’ performance, not their price. Many true high-end systems cost no more—and often less—than the all-in-one rack systems sold in department stores. I’ve heard many inexpensive systems that capture the essence of what high-quality music reproduction is all about—systems easily within the budgets of average consumers. Although many high-end components are high-priced, this doesn’t mean that you have to take out a second mortgage to have high-quality music reproduction in your home. A great-sounding system can be less expensive than you might think.

Second, high-end audio is about communicating the musical experience, not adding elaborate, difficult-to-operate features. In fact, high-end systems are much easier to use than
mass-market mid-fi systems. This is because the high-end ethic eliminates useless features, instead putting the money into sound quality. High-end audio is for music lovers, not electronics whizzes.

Third, anyone who likes music can immediately appreciate the value of high-quality sound reproduction. It doesn’t take a “golden ear” to know what sounds good. The differences between good and mediocre music reproduction are instantly obvious. The reaction—usually pleasure and surprise—of someone hearing a true high-end audio system for the first time underscores that high-end audio can be appreciated by everyone. If you enjoy music, you’ll enjoy it more through a high-end system. It’s that simple.

Finally, the goal of high-end audio is to make the equipment “disappear”; when that happens, we know that we have reached the highest state of communication between musician and listener. High-end audio isn’t about equipment; it’s about music.

The high-end credo holds that the less the musical signal is processed, the better. Any electronic circuit, wire, tone control, or switch degrades the signal—and thus the musical experience. This is why you won’t find graphic equalizers, “spatial enhancers,” “subharmonic synthesizers,” or other such gimmicks in high-end equipment. These devices are not only departures from musical reality, they add unnecessary circuitry to the signal path. By minimizing the amount of electronics between you and the musicians, high-end audio products can maximize the directness of the musical experience. Less is more.

Imagine yourself standing at the edge of the Grand Canyon, feeling overwhelmed by its grandeur. You experience not only the vastness of this massive sculpture carved deep into the earth, but all its smaller features jump out at you as well, vivid and alive. You can discern fine gradations of hue in the rock layers—distinctions between the many shades of red are readily apparent. Fine details of the huge formations are easily resolved simply by your looking at them, thus deepening your appreciation. The contrasts of light and shadow highlight the apparently infinite maze of cracks and crevasses. The longer and closer you look, the more you see. The wealth of sensory input keeps you standing silently at the edge, in awe of nature’s unfathomable beauty.

Now imagine yourself looking at the Grand Canyon through a window made of many thicknesses of glass, each one less than perfectly transparent. One pane has a slight grayish opacity that dulls the vivid hues and obliterates the subtle distinctions between similar shades of color. The fine granular structure of the next pane diminishes your ability to resolve features in the rock. Another pane reduces the contrast between light and shadow, turning the Canyon’s immense depth and breadth into a flat canvas. Finally, the window-frame itself constricts your view, destroying the Canyon’s overall impact. Instead of the direct and immediate reality of standing at the edge of the Grand Canyon, what you see is gray, murky, lifeless, and synthetic. You may as well be watching it on television.

Hearing reproduced music through a mediocre playback system is like looking at the Grand Canyon through those panes of glass. Each component in the playback chain—CD player, turntable, preamplifier, power amplifier, loudspeakers, and the cables that connect them—in some way distorts the signal passing through it. One product may add a coarse, grainy character to instrumental textures. Another may reduce the dynamic contrasts between loud and soft, muting the composer’s or performer’s expression. Yet another may cast a thick, murky pall over the music, destroying its subtle tonal colors and overlaying all instruments with an undifferentiated timbre. Finally, the windowframe—that is, the electronic and mechanical playback system—diminishes the expanse that is the musicians’ artistic intent.
High-end audio is about removing as many panes of glass as possible, and making those that remain as transparent as they can be. The fewer the panes, and the less effect each has on the information passing through it, the closer we get to the live experience and the deeper our connection with the musical message.

Why are high-end audio products more transparent windows on the musical event than mass-market “stereo systems”? High-end products are designed to sound good—that is, like the real thing. They’re not necessarily designed to perform “well” according to some arbitrary technical specification. The true high-end designer listens to the product during its development, changing parts and trying different techniques to produce the most realistic sound possible. He combines technical skill with musical sensitivity to create a product that best conveys the musical experience. This dedication often becomes a zealous pursuit, involving many hundreds of listening hours and painstaking attention to every factor that influences the sound. Often, a more expensive part will be included to improve the product’s sound, while the retail price remains the same. The higher cost of this musically superior part comes off the company’s bottom line. Why? Because the high-end designer cares deeply about music and its reproduction.

Conversely, mass-market audio components are often designed to look good “on paper”—on the specification sheet—sometimes at the expense of sound quality. A good example of this is the “THD wars” of the 1970s and ‘80s. THD stands for Total Harmonic Distortion, a specification widely used by uneducated consumers as a measure of amplifier quality. (If you’ve done this, don’t worry; before I learned more about audio, I, too, looked at THD figures.) The lower the THD, the better the amplifier was perceived to be. This led the electronics giants to produce products with vanishingly low THD numbers. It became a contest to see which brand had the most zeros after the decimal point in its THD specification (0.001%, for example). Many buyers bought receivers or amplifiers solely on the basis of this specification.
Although low THD is a worthy design goal, the problem arose in how those extremely low distortion figures were obtained. A technique to reduce distortion in amplifiers is called “feedback”—taking part of the output signal and feeding it back to the input. Large amounts of feedback reduce THD, but cause all kinds of other problems that degrade the amplifier’s musical qualities. Did the electronics giants care that the large amounts of negative feedback induced to reduce their products’ THD measurements actually made those products sound worse? Not a chance. The only thing that mattered was making a commodity that would sell in greater quantity. They traded musical performance for an insignificant technical specification that was sold to the public as being important. Those buyers choosing components on the basis of a specification sheet rather than listening ended up with poor-sounding systems. Ironically, the amplifiers that had the lowest THDs probably had the lowest quality of sound as well.

This example illustrates the vast difference between mass-market manufacturers’ and high-end companies’ conceptions of what an audio component should do. High-end manufacturers care more about how the product sounds than about how it performs on the test bench. They know that their audience of musically sensitive listeners will buy on the basis of sound quality, not specifications.

High-end products are not only designed by ear, but are often hand-built by skilled craftspeople who take pride in their work. The assemblers are often audiophiles themselves, building the products with as much care as if the products were to be installed in their own homes. This meticulous attention to detail results in a better quality of construction, or build quality. Better build quality can not only improve a product’s sound, but increase its long-term reliability as well. Moreover, beautifully hand-crafted components can inspire a pride in ownership that the makers of mass-produced products can’t hope to match. High-end audio products are often backed by better customer service than mid-fi products. Because high-end manufacturers care more about their products and customers, they generally offer longer warranties, more liberal exchange policies, and better service. It is not uncommon for high-end manufacturers to repair products out of warranty at no charge. This isn’t to say you should expect such treatment, only that it sometimes happens with high-end and is unthinkable with mass-market products. High-end companies care about their customers.

These attributes also apply to high-end specialty retailers. The high-end dealer shares a passion for quality music reproduction and commitment to customer service. If you’re used to buying audio components at a mass-market dealer, you’ll be pleasantly surprised by a visit to a high-end store. Rather than trying to get you to buy something that may not be right for you, the responsible high-end dealer will strive to assemble a system that will provide the greatest long-term musical pleasure. Such a dealer will put your musical satisfaction ahead of this month’s bottom line.

Finally, most high-end products are designed and built in America by American companies. In fact, American-made audio components are highly regarded throughout the world. More than 40% of all American high-end audio production is exported to foreign countries, particularly the Far East. This is true even though high-end products cost about twice as much abroad as they do in the U.S., owing to shipping, import duties, and importer profit. The enthusiasm for American high-end products abroad is even more remarkable when one remembers the popular American misperception that the best audio equipment is made in Japan.
On a deeper level, high-end products are fundamentally different from mass-market products. From their conception, purpose, design, construction, and marketing. In all these differences, what distinguishes a high-end from a mass-market product is the designer’s caring attitude toward music. He isn’t creating boxes to be sold like any other commodity; he’s making musical instruments whose performance will affect how his customers experience music. The high-end component is a physical manifestation of a deeply felt concern about how well music is reproduced, and, by extension, how much it is enjoyed by the listener.

The high-end designer builds products he would want to listen to himself. Because he cares about music, it matters to him how an unknown listener, perhaps thousands of miles away, experiences the joy of music. The greater the listener’s involvement in the music, the better the designer has done his job.

A digital processor designer I know epitomizes this dedication. He had specified a premium-quality resistor at a certain point in his new design. This resistor cost $1 rather than the pennies most resistors cost. Just as the design was about to go into production, he looked even harder for any changes that would improve the product’s sound. For fun, he tried an exotic $10 resistor in the circuit in place of the $1 resistor. He was surprised at how much better the product sounded with this change, and couldn’t bear to see the product shipped with the $1 resistors. The company made the product with the $10 resistors although the retail price had already been established based on the parts cost using $1 resistors. High-end designers try to add quality to, rather than subtract cost from, their products.

To the high-end designer, electronic or mechanical design isn’t merely a technical undertaking—it’s an act of love and devotion. Each aspect of a product’s design, technical as well as musical, is examined in a way that would surprise those unaccustomed to such commitment. The ethos of music reproduction goes to the very core of the high-end designer’s being; it’s not a job he merely shows up for every day. The result is a much more powerful and intimate involvement in the music for the listener than is possible with products designed without this dedication.

What is high-end audio? What is high-end sound? It is when the playback system is forgotten, seemingly replaced by the performers in your listening room. It is when you feel the composer or performer speaking across time and space to you. It is feeling a physical rush during a musical climax. It is the ineffable roller-coaster ride of emotion the composer somehow managed to encode in a combination of sounds. It is when the physical world disappears, leaving only your consciousness and the music. *That* is high-end audio.